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Nonlinearities in conservative growth equations
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Using the dynamic renormalization group technique, we analyze general nonlinearities in a conservative
nonlinear growth equation with nonconserved Gaussian white noise. We show that they fall into two classes
only: the Edwards-Wilkinson and Lai—Das Sarma types, by explicitly computing the associated amputated two
and three point functions at the first order in perturbation parameter(s). We further generalize this analysis to
higher order nonlinearities and also suggest a physically meaningful geometric interpretation of the same.

PACS number(s): 64.60.Qb, 05.70.Ln, 05.40.+j, 05.70.Jk

Growth of thin films from vapor has been a subject of
significant interest for both experimentalists and theorists.
The nonequilibrium nature of this growth makes the tech-
niques applicable to the study of fractals, available for un-
derstanding the physics of thin film growth, particularly in
the thermodynamic limit [1]. Most of the characterization
can be done by observing spatiotemporal behavior of the
interface fluctuations. This behavior can be studied within
the framework of continuum equations such as a Langevin
type equation proposed by Edwards and Wilkinson (EW) [2].
It allows a nonequilbrium statistical mechanical description
which brings out the scale invariant nature of the interface
roughness. Consequently one obtains two dynamical critical
exponents « and B (or equivalently @ and z=a/B) which
completely characterize the growth. The correlation length
along the substrate varies as r and ¢!/ whereas that along
the normal to the surface exhibits a ## behavior.

The geometrical feature of growth represented by the lat-
eral component of the growth velocity was captured by Kar-
dar, Parisi, and Zhang (KPZ) [3], by introducing a nonlinear
term proportional to (V4)? in the EW equation:

h_ V2h+)\ Vh)%+ 1
5=V 5( )+, (1)

where A(x,t) is the height function and 7(x,t) is a noncon-
served Gaussian white noise characterized completely by its
one- and two-point functions:

< 77(X7 t)) = 07
(n(x)n(x',t")=2D8(x—x)8(t—t"). ()
The dynamic renormalization group technique [4] applied
to the KPZ model yields z=3/2 and a=1/2, based on one-

loop calculations for a one dimensional substrate. These val-
ues of a and z are obtained by looking for a nontrivial fixed
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point for the set of one-loop flow equations for the param-
eters v, A\, and D stated above. It turns out that these results
are exact in the sense that they hold to all orders and can be
obtained by invoking the Galilean invariance of the KPZ
equation and the Fokker-Planck equation associated with it
for the 1+1 case [1]. The KPZ equation, however, is of the
nonconservative type, [i.e., it cannot be written in the form
oh/9t=V -j where j(x,t) is a local current] and so is rel-
evant mainly for growth with overhangs and vacancies cor-
responding to the regime of high temperature and high vola-
tility of the deposited material.

A general fourth order conmservative equation was pro-
posed by Lai and Das Sarma (LDS) [5] of the form

oh
- = V2V2h— V4V4h+ )\22V2(Vh)2+ )\13V . (Vh)3+ n.

ot
3)

If N»,=0 then in the absence of noise, this equation is sym-
metric under #— —h. When v, is zero the V- (Vk)? term is
more relevant than the V2(VA)? term as a perturbation to the
linear term V*A. If one makes the coefficients in this equa-
tion time dependent, the situation can change significantly
with the possibility of the latter term taking over the former
one. Interpretation of this in terms of different relaxation
mechanisms operating at different times during the pre-
asymptotic region in time will be discussed elsewhere [6].

In a recent paper, Das Sarma and Kotlyar [7] have shown
that the most general conserved fourth order nonlinearity,
viz., A3V -(Vh)3, belongs to the universality class of the
EW model, i.e., the interaction produces a — v2k2 term in the
inverse propagator at zero frequency, where the coefficient
v, is proportional to the first power of the perturbation pa-
rameter A\ 3. This confirmed the earlier numerical evidence
based on simulations in (1+ 1) dimensions due to Kim and
Das Sarma [8].

The purpose of this paper is to show that this analysis is in
fact completely general and a general nonlinear conservative
growth equation reduces to either Lai—Das Sarma or the EW
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FIG. 1. The vertex for V- (VA)2"* 1 nonlinearity. The associated
Feynman rule is
( -1 )n +1
(2n+_1_) LSTC PR PY R C PRESRY  9)

X[k Gpns1]8(k— 2721 q) S(w— 272 ).

form. We shall consider the following equation with a gen-
eral nonlinearity of order (2n+2) for integer n,

oh Ny
P 2n+2 R v 2n
Y vV h+ 2nV (Vh)"+

)\1 2n+
WV(V}!) L+ 7.
4

Note that the linear term too is of order (2n+2), in order to
keep the nonlinear terms relevant in the renormalization
group sense.

Consider, e.g., the general nonlinearity V-(Vh)?"*1,
(The choices n=0 and n=1 correspond respectively to the
EW equation and Ref. [6]). For the purpose of diagrammatic
perturbation theory, it corresponds to a “vertex” with (2n
+1) prongs ending on a cross and one free ended prong.
(see, e.g., the book by Barabasi and Stanley in Ref. [1] for
notations and conventions). The vertex and the correspond-
ing Feynman rule are given in Fig. 1. For example, for
n=1 it corresponds to the vertex factor of
3 M(q; - @)k (k—q; —q,), which upon suitable identifica-
tion of the parameters and a change of variables becomes the
expression of Ref. [6]. The propagator modification at order
N\, is shown in Fig. 2.

Again, with n=1 we recover the one-loop Hartree term
of Ref. [6]. The n-loop Hartree diagram shown in Fig. 2 is
equally easy to evaluate, thanks to the peculiar nature of the
noise contraction which generates the Feynman factor
2D 6(k;+k;)0(w,+ wy). The inverse free propagator is
given by

Gy l(kw)=—iw+(—1)"vk>"*2, (5)

For our purpose (which is to identify the modification of the
equation of motion or the Hamiltonian whose % variation
produces the equation), it is enough to compute the ‘““‘vertex
function” or the ‘“‘amputated” correlation function- which
amounts to snapping off the external propagators. There is a
symmetry factor associated with this diagram given by
3#(2n+1)2n(2n—1). Also every noise contraction gives a
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FIG. 2. The n-Loop Hartree diagram generating the EW term
with a coefficient proportional to A;. Also shown is the two-point
vertex function.

2D  factor yielding an overall multiplier as
(—1)""\;n(2n—1)(2D)". Using the standard techniques
to evaluate the frequency-momentum integrals, we finally
arrive at the amputated n-loop Hartree vertex expression as

(__1)n+l)\1(D/V)nn(2n_1)Kz{f qd—(2n+1)dq]nk2’
(6)

where K is related to the usual angular integration factor as
K,=(1/(2m)%S,. 1t is clear from this expression that the
V-(Vh)?"*! nonlinearity produces a V24 term (identified as
the coefficient of —k? in the above expression) at the same
order in \; in dimensions d<d.,;. This puts the “odd or-
der” nonlinearities in the EW class.

@, Q)

Ck-q, (D—Q)

FIG. 3. The diagram for the nonlinearity of the type V2(Vh)?
proportional to N, generated by the  nonlinearity
(1/2n)\,V2(Vh)?". Also shown is the three-point vertex function.
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Exactly similar analysis (see Fig. 3) of the “even order”
nonlinearity (1/2n)\,V?(Vh)?*" produces the amputated
three-point function (which is just the object that appears in
the equation) given by

2 n—1 n—1
kz[q(k—q)]%l( 4”)(Dfd) [fpd—(2n+1)dp} .
(7)

Again, we simply identify from this expression that the Lai—
Das Sarma term V2(Vh)? is produced at the first order in
\, in dimensions less than the critical dimension, putting the
even order nonlinearities in the Lai—Das Sarma class.

These arguments are trivially extendable to the nonlineari-
ties of the form V2" *1.(Vh)2"*1 and V2™(Vh)2" (with the
appropriate linear terms in the growth equation to keep the
nonlinearities relevant). They respectively generate the gen-
eralized EW and the Lai—Das Sarma terms, viz., V?"V2h
and V2"(Vh)? types. Generally a nonlinearity of the kind
V2[V2"h]?" collapses to V2(V2™h)? and V-[V2m*1p]2n+1
to V2[V2"h].

The above mechanism of generation of the lower order
terms via higher order nonlinearities reflects onto a simple
physically meaningful geometric picture of the evolving
growth front. Consider, e.g., the equation

oh
3?=VV2"+2h+)\1V-(Vh)2"“+ 7. 8)
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The rate 9h/Jt depends upon the variation of (VA)?"*1,
including its sign and A varies locally to attempt to make this
rate vanish for a stable growth mode. Note that the nature of
the response for terms V-(Vh) and V-(VA)?"*1 is exactly
the same except for its magnitude, given any geometrical
configuration on the surface for any value of n (i.e., the
power of the gradient). This fact seems, according to us, to
be the root cause for the generation of the EW term since the
surface morphology in these cases must be comparable, con-
sidering the compatibility of the responses.

Similar reasoning can be furnished in the case of
V2(Vh)*" leading to the V2(VA)? term. Here the only dif-
ference is that the growth rate does not depend on the sigr .f
h, thus making the LDS term the lowest order term allowed.
This leads to the conclusion that in general the nonlinearities
are characterized by the order of the variation of 4 locally,
i.e., slope, curvature, etc., corresponding to Vh,V2h, etc.
and thus a general nonlinearity is of the form V2"(V"h)2,
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